InterPro : IPR015572

Name  Voltage-dependent potassium channel protein Shaw, invertebrate Short Name  Shaw_inv
Type  Family Description  Potassium channels are the most diverse group of the ion channel family[, ]. They are important in shaping the action potential, and in neuronal excitability and plasticity []. The potassium channel family iscomposed of several functionally distinct isoforms, which can be broadlyseparated into 2 groups []: the practically non-inactivating 'delayed' group and the rapidly inactivating 'transient' group.These are all highly similar proteins, with only small amino acidchanges causing the diversity of the voltage-dependent gating mechanism,channel conductance and toxin binding properties. Each type of K+channel is activated by different signals and conditions depending on their type of regulation: some open in response to depolarisation of the plasma membrane; others in response to hyperpolarisation or an increase in intracellular calcium concentration; some can be regulated by binding of a transmitter, together with intracellular kinases; while others are regulated by GTP-binding proteins orother second messengers []. In eukaryotic cells, K+channelsare involved in neural signalling and generation of the cardiac rhythm, act as effectors in signal transduction pathways involving G protein-coupled receptors (GPCRs) and may have a role in target cell lysis by cytotoxic T-lymphocytes []. In prokaryotic cells, they play a role in themaintenance of ionic homeostasis [].All K+channels discovered so far possess a core of alpha subunits, each comprising either one or two copies of a highly conserved pore loop domain (P-domain). The P-domain contains the sequence (T/SxxTxGxG), which hasbeen termed the K+selectivity sequence.In families that contain one P-domain, four subunits assemble to form a selective pathway for K+across the membrane.However, it remains unclear how the 2 P-domain subunits assemble to form a selective pore. The functional diversity of these families can arise through homo- or hetero-associations of alpha subunits or association with auxiliary cytoplasmic beta subunits. K+channel subunits containing one pore domain can be assigned into one of two superfamilies: those that possess six transmembrane (TM) domains and those that possess only two TM domains.The six TM domain superfamily can be further subdivided into conserved gene families: the voltage-gated (Kv) channels; the KCNQ channels (originally known as KvLQT channels); the EAG-like K+channels; and three types of calcium (Ca)-activated K+channels (BK, IK and SK)[]. The 2TM domain family comprises inward-rectifying K+channels. In addition, there are K+channel alpha-subunits that possess two P-domains. These are usually highly regulated K+selective leak channels.The Kv family can be divided into several subfamilies on the basis of sequence similarity and function. Four of these subfamilies, Kv1 (Shaker), Kv2 (Shab), Kv3 (Shaw) and Kv4 (Shal), consist of pore-forming alpha subunits that associate with different types of beta subunit. Each alpha subunit comprises six hydrophobic TM domains with a P-domain between the fifth and sixth, which partially resides in the membrane. The fourth TM domain has positively charged residues at every third residue and acts as a voltage sensor, which triggers the conformational change that opens the channel pore in response to a displacement in membrane potential []. More recently, 4 new electrically-silent alpha subunits have been cloned: Kv5 (KCNF), Kv6 (KCNG), Kv8 and Kv9 (KCNS). These subunits do not themselves possess any functional activity, but appear to form heteromeric channels with Kv2 subunits, and thus modulate Shab channel activity []. When highly expressed, they inhibit channel activity, but at lower levels show more specific modulatory actions.A voltage-dependent potassium channel gene designated Shaw was initially isolated from Drosophila melanogaster(Fruit fly). Subsequently, several vetebrate potassium channels with similar amino acid sequences were subsequently found and, together with the D. melanogaster channel, now constitute the Kv3 family. These channels are thought to play a role in shortening of action potential durations and modulating pre-synaptic neurotransmitter release. In mammals, the family consists of 4 genes (Kv3.1, Kv3.2, Kv3.3 and Kv3.4). Each gene product has its own subcellular location and function.This particular family model is based on Kv3x proteins from invertebrates, such as Caenorhabditis elegans, Drosophila melanogaster(Fruit fly), Anopheles gambiae(African malaria mosquito), and Aplysia californica(California sea hare).
 Feedback

Sequence Features

GO Displayer

Proteins

InterPro protein domain ID --> Contigs

 

Other

0 Child Features

2 Contains

Id Name Short Name Type
IPR005821 Ion transport domain Ion_trans_dom Domain
IPR003131 Potassium channel tetramerisation-type BTB domain T1-type_BTB Domain

0 Found In

1 Parent Features

Id Name Short Name Type
IPR003974 Potassium channel, voltage dependent, Kv3 K_chnl_volt-dep_Kv3 Family

9 Publications

First Author Title Year Journal Volume Pages
Perney TM The molecular biology of K+ channels. 1991 Curr Opin Cell Biol 3 663-70
Luneau C Shaw-like rat brain potassium channel cDNA's with divergent 3' ends. 1991 FEBS Lett 288 163-7
Attali B Cloning, functional expression, and regulation of two K+ channels in human T lymphocytes. 1992 J Biol Chem 267 8650-7
Schwarz TL Multiple potassium-channel components are produced by alternative splicing at the Shaker locus in Drosophila. 1988 Nature 331 137-42
Tempel BL Cloning of a probable potassium channel gene from mouse brain. 1988 Nature 332 837-9
Stühmer W Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. 1989 EMBO J 8 3235-44
Miller C An overview of the potassium channel family. 2000 Genome Biol 1 REVIEWS0004
Salinas M New modulatory alpha subunits for mammalian Shab K+ channels. 1997 J Biol Chem 272 24371-9
Sansom MS Potassium channels: watching a voltage-sensor tilt and twist. 2000 Curr Biol 10 R206-9



To cite PlanMine, please refer to the following publication:

Rozanski, A., Moon, H., Brandl, H., Martín-Durán, J. M., Grohme, M., Hüttner, K., Bartscherer, K., Henry, I., & Rink, J. C.
PlanMine 3.0—improvements to a mineable resource of flatworm biology and biodiversity
Nucleic Acids Research, gky1070. doi:10.1093/nar/gky1070 (2018)