InterPro : IPR003091

Name  Potassium channel Short Name  K_chnl
Type  Family Description  Potassium channels are the most diverse group of the ion channel family[, ]. They are important in shaping the action potential, and in neuronal excitability and plasticity []. The potassium channel family iscomposed of several functionally distinct isoforms, which can be broadlyseparated into 2 groups []: the practically non-inactivating 'delayed' group and the rapidly inactivating 'transient' group.These are all highly similar proteins, with only small amino acidchanges causing the diversity of the voltage-dependent gating mechanism,channel conductance and toxin binding properties. Each type of K+channel is activated by different signals and conditions depending on their type of regulation: some open in response to depolarisation of the plasma membrane; others in response to hyperpolarisation or an increase in intracellular calcium concentration; some can be regulated by binding of a transmitter, together with intracellular kinases; while others are regulated by GTP-binding proteins orother second messengers []. In eukaryotic cells, K+channelsare involved in neural signalling and generation of the cardiac rhythm, act as effectors in signal transduction pathways involving G protein-coupled receptors (GPCRs) and may have a role in target cell lysis by cytotoxic T-lymphocytes []. In prokaryotic cells, they play a role in themaintenance of ionic homeostasis [].All K+channels discovered so far possess a core of alpha subunits, each comprising either one or two copies of a highly conserved pore loop domain (P-domain). The P-domain contains the sequence (T/SxxTxGxG), which hasbeen termed the K+selectivity sequence.In families that contain one P-domain, four subunits assemble to form a selective pathway for K+across the membrane.However, it remains unclear how the 2 P-domain subunits assemble to form a selective pore. The functional diversity of these families can arise through homo- or hetero-associations of alpha subunits or association with auxiliary cytoplasmic beta subunits. K+channel subunits containing one pore domain can be assigned into one of two superfamilies: those that possess six transmembrane (TM) domains and those that possess only two TM domains.The six TM domain superfamily can be further subdivided into conserved gene families: the voltage-gated (Kv) channels; the KCNQ channels (originally known as KvLQT channels); the EAG-like K+channels; and three types of calcium (Ca)-activated K+channels (BK, IK and SK)[]. The 2TM domain family comprises inward-rectifying K+channels. In addition, there are K+channel alpha-subunits that possess two P-domains. These are usually highly regulated K+selective leak channels.

Sequence Features

GO Displayer


InterPro protein domain ID --> Contigs



1 Child Features

Id Name Short Name Type
IPR028325 Voltage-gated potassium channel VG_K_chnl Family

2 Contains

Id Name Short Name Type
IPR005821 Ion transport domain Ion_trans_dom Domain
IPR003131 Potassium channel tetramerisation-type BTB domain T1-type_BTB Domain

0 Found In

0 Parent Features

7 Publications

First Author Title Year Journal Volume Pages
Perney TM The molecular biology of K+ channels. 1991 Curr Opin Cell Biol 3 663-70
Luneau C Shaw-like rat brain potassium channel cDNA's with divergent 3' ends. 1991 FEBS Lett 288 163-7
Attali B Cloning, functional expression, and regulation of two K+ channels in human T lymphocytes. 1992 J Biol Chem 267 8650-7
Schwarz TL Multiple potassium-channel components are produced by alternative splicing at the Shaker locus in Drosophila. 1988 Nature 331 137-42
Tempel BL Cloning of a probable potassium channel gene from mouse brain. 1988 Nature 332 837-9
Stühmer W Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. 1989 EMBO J 8 3235-44
Miller C An overview of the potassium channel family. 2000 Genome Biol 1 REVIEWS0004

To cite PlanMine, please refer to the following publication:

Rozanski, A., Moon, H., Brandl, H., Martín-Durán, J. M., Grohme, M., Hüttner, K., Bartscherer, K., Henry, I., & Rink, J. C.
PlanMine 3.0—improvements to a mineable resource of flatworm biology and biodiversity
Nucleic Acids Research, gky1070. doi:10.1093/nar/gky1070 (2018)