InterPro : IPR002379

Name  V-ATPase proteolipid subunit C-like domain Short Name  ATPase_proteolipid_c_like_dom
Type  Domain Description  Transmembrane ATPases are membrane-bound enzyme complexes/ion transporters that use ATP hydrolysis to drive the transport of protons across a membrane. Some transmembrane ATPases also work in reverse, harnessing the energy from a proton gradient, using the flux of ions across the membrane via the ATPase proton channel to drive the synthesis of ATP. There are several different types of transmembrane ATPases, which can differ in function (ATP hydrolysis and/or synthesis), structure (e.g., F-, V- and A-ATPases, which contain rotary motors) and in the type of ions they transport [, ]. The different types include:F-ATPases (F1F0-ATPases), which are found in mitochondria, chloroplasts and bacterial plasma membranes where they are the prime producers of ATP, using the proton gradient generated by oxidative phosphorylation (mitochondria) or photosynthesis (chloroplasts).V-ATPases (V1V0-ATPases), which are primarily found in eukaryotic and they function as proton pumps that acidify intracellular compartments and, in some cases, transport protons across the plasma membrane []. They are also found in bacteria [].A-ATPases (A1A0-ATPases), which are found in Archaea and function like F-ATPases, though with respect to their structure and some inhibitor responses, A-ATPases are more closely related to the V-ATPases [, ].P-ATPases (E1E2-ATPases), which are found in bacteria and in eukaryotic plasma membranes and organelles, and function to transport a variety of different ions across membranes.E-ATPases, which are cell-surface enzymes that hydrolyse a range of NTPs, including extracellular ATP.The F-ATPases (or F1F0-ATPases) and V-ATPases (or V1V0-ATPases) are each composed of two linked complexes: the F1 or V1 complex contains the catalytic core that synthesizes/hydrolyses ATP, and the F0 or V0 complex that forms the membrane-spanning pore. The F- and V-ATPases all contain rotary motors, one that drives proton translocation across the membrane and one that drives ATP synthesis/hydrolysis [, ].In V-ATPases, there are three proteolipid subunits (c, c' and c'') that form part of the proton-conducting pore, each containing a buried glutamic acid residue that is essential for proton transport, and together they form a hexameric ring spanning the membrane [, ]. Structurally, the c subunits consist of a two antiparallel transmembrane helices. Both helices of one c subunit are connected by a loop on the cytoplasmic side [].This entry represents the V-ATPase proteolipid subunit C like domain found in the V-ATPase proteolipid subunit C and the F-ATP synthase subunit C.
 Feedback

Sequence Features

GO Displayer

Proteins

InterPro protein domain ID --> Contigs

 

Other

0 Child Features

1 Contains

Id Name Short Name Type
IPR020537 ATPase, F0 complex, subunit C, DCCD-binding site ATPase_F0-cplx_csu_DDCD_BS Binding_site

0 Found In

0 Parent Features

11 Publications

First Author Title Year Journal Volume Pages
Yasuda R Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. 2001 Nature 410 898-904
Cross RL The evolution of A-, F-, and V-type ATP synthases and ATPases: reversals in function and changes in the H+/ATP coupling ratio. 2004 FEBS Lett 576 1-4
Rappas M Mechanisms of ATPases--a multi-disciplinary approach. 2004 Curr Protein Pept Sci 5 89-105
Toei M Regulation and isoform function of the V-ATPases. 2010 Biochemistry 49 4715-23
Grüber G New insights into structure-function relationships between archeal ATP synthase (A1A0) and vacuolar type ATPase (V1V0). 2008 Bioessays 30 1096-109
Schäfer G F-type or V-type? The chimeric nature of the archaebacterial ATP synthase. 1992 Biochim Biophys Acta 1101 232-5
Radax C F-and V-ATPases in the genus Thermus and related species. 1998 Syst Appl Microbiol 21 12-22
Wilkens S A structural model of the vacuolar ATPase from transmission electron microscopy. 2005 Micron 36 109-26
Inoue T Cysteine-mediated cross-linking indicates that subunit C of the V-ATPase is in close proximity to subunits E and G of the V1 domain and subunit a of the V0 domain. 2005 J Biol Chem 280 27896-903
Harrison M Structure and function of the vacuolar H+-ATPase: moving from low-resolution models to high-resolution structures. 2003 J Bioenerg Biomembr 35 337-45
Pogoryelov D High-resolution structure of the rotor ring of a proton-dependent ATP synthase. 2009 Nat Struct Mol Biol 16 1068-73



To cite PlanMine, please refer to the following publication:

Rozanski, A., Moon, H., Brandl, H., Martín-Durán, J. M., Grohme, M., Hüttner, K., Bartscherer, K., Henry, I., & Rink, J. C.
PlanMine 3.0—improvements to a mineable resource of flatworm biology and biodiversity
Nucleic Acids Research, gky1070. doi:10.1093/nar/gky1070 (2018)