InterPro : IPR016082

Name  Ribosomal protein L30, ferredoxin-like fold domain Short Name  Ribosomal_L30_ferredoxin-like
Type  Domain Description  Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [, ]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [, ].Ribosomal protein L30 is one of the proteins from the large ribosomal subunit. L30 belongs to a family of ribosomal proteins which, on the basis of sequence similarities [], groups bacteria and archaea L30, yeast mitochondrial L33, and Drosophila melanogaster, Dictyostelium discoideum(Slime mold), fungal and mammalian L7 ribosomal proteins. L30 from bacteria are small proteins of about 60 residues, those from archaea are proteins of about 150 residues, and eukaryotic L7 are proteins of about 250 to 270 residues.This entry represents a domain with a ferredoxin-like fold, with a core structure consisting of core: beta-alpha-beta-alpha-beta. This domain isfound in prokaryotic ribosomal protein L30 (short-chain member of the family), as well as in archaeal L30 (L30a) (long-chain member of the family), the later containing an additional C-terminal (sub)domain).It is also found in nucleolar proteins with similarity to large ribosomal subunit L7 proteins. These are constituents of 66S pre-ribosomal particles and play an essential role in processing of precursors to the large ribosomal subunit RNAs [, , ].
 Feedback

Sequence Features

GO Displayer

Proteins

InterPro protein domain ID --> Contigs

 

Other

0 Child Features

1 Contains

Id Name Short Name Type
IPR018038 Ribosomal protein L30, conserved site Ribosomal_L30_CS Conserved_site

1 Found In

Id Name Short Name Type
IPR005998 Ribosomal protein L7, eukaryotic Ribosomal_L7_euk Family

0 Parent Features

7 Publications

First Author Title Year Journal Volume Pages
Ramakrishnan V Atomic structures at last: the ribosome in 2000. 2001 Curr Opin Struct Biol 11 144-54
Maguire BA The ribosome in focus. 2001 Cell 104 813-6
Chandra Sanyal S The end of the beginning: structural studies of ribosomal proteins. 2000 Curr Opin Struct Biol 10 633-6
Mizuta K Yeast ribosomal proteins: XIII. Saccharomyces cerevisiae YL8A gene, interrupted with two introns, encodes a homolog of mammalian L7. 1992 Nucleic Acids Res 20 1011-6
Lalo D Two distinct yeast proteins are related to the mammalian ribosomal polypeptide L7. 1993 Yeast 9 1085-91
Dunbar DA A nucleolar protein related to ribosomal protein L7 is required for an early step in large ribosomal subunit biogenesis. 2000 Proc Natl Acad Sci U S A 97 13027-32
Horsey EW Role of the yeast Rrp1 protein in the dynamics of pre-ribosome maturation. 2004 RNA 10 813-27



To cite PlanMine, please refer to the following publication:

Rozanski, A., Moon, H., Brandl, H., Martín-Durán, J. M., Grohme, M., Hüttner, K., Bartscherer, K., Henry, I., & Rink, J. C.
PlanMine 3.0—improvements to a mineable resource of flatworm biology and biodiversity
Nucleic Acids Research, gky1070. doi:10.1093/nar/gky1070 (2018)