InterPro : IPR002515

Name  Zinc finger, C2HC-type Short Name  Znf_C2HC
Type  Repeat Description  Zinc finger (Znf) domains are relatively small protein motifs which contain multiple finger-like protrusions that make tandem contacts with their target molecule. Some of these domains bind zinc, but many do not; instead binding other metals such as iron, or no metal at all. For example, some family members form salt bridges to stabilise the finger-like folds. They were first identified as a DNA-binding motif in transcription factor TFIIIA from Xenopus laevis(African clawed frog), however they are now recognised to bind DNA, RNA, protein and/or lipid substrates [, , , , ]. Their binding properties depend on the amino acid sequence of the finger domains and of the linker between fingers, as well as on the higher-order structures and the number of fingers. Znf domains are often found in clusters, where fingers can have different binding specificities. There are many superfamilies of Znf motifs, varying in both sequence and structure. They display considerable versatility in binding modes, even between members of the same class (e.g. some bind DNA, others protein), suggesting that Znf motifs are stable scaffolds that have evolved specialised functions. For example, Znf-containing proteins function in gene transcription, translation, mRNA trafficking, cytoskeleton organisation, epithelial development, cell adhesion, protein folding, chromatin remodelling and zinc sensing, to name but a few []. Zinc-binding motifs are stable structures, and they rarely undergo conformational changes upon binding their target. This entry represents the CysCysHisCys (C2HC) type zinc finger domain found in eukaryotes. Proteins containing these domains include:MYST family histone acetyltransferases [, []Myelin transcription factor Myt1 []Suppressor of tumourigenicity protein 18 (ST18) []
 Feedback

Sequence Features

GO Displayer

Proteins

InterPro protein domain ID --> Contigs

 

Other

0 Child Features

0 Contains

0 Found In

0 Parent Features

10 Publications

First Author Title Year Journal Volume Pages
Matthews JM Zinc fingers--folds for many occasions. 2002 IUBMB Life 54 351-5
Gamsjaeger R Sticky fingers: zinc-fingers as protein-recognition motifs. 2007 Trends Biochem Sci 32 63-70
Hall TM Multiple modes of RNA recognition by zinc finger proteins. 2005 Curr Opin Struct Biol 15 367-73
Brown RS Zinc finger proteins: getting a grip on RNA. 2005 Curr Opin Struct Biol 15 94-8
Klug A Zinc finger peptides for the regulation of gene expression. 1999 J Mol Biol 293 215-8
Laity JH Zinc finger proteins: new insights into structural and functional diversity. 2001 Curr Opin Struct Biol 11 39-46
Kim JG Myelin transcription factor 1 (Myt1) of the oligodendrocyte lineage, along with a closely related CCHC zinc finger, is expressed in developing neurons in the mammalian central nervous system. 1997 J Neurosci Res 50 272-90
Smith AT MYST family histone acetyltransferases in the protozoan parasite Toxoplasma gondii. 2005 Eukaryot Cell 4 2057-65
Akhtar A The histone H4 acetyltransferase MOF uses a C2HC zinc finger for substrate recognition. 2001 EMBO Rep 2 113-8
Jandrig B ST18 is a breast cancer tumor suppressor gene at human chromosome 8q11.2. 2004 Oncogene 23 9295-302



To cite PlanMine, please refer to the following publication:

Rozanski, A., Moon, H., Brandl, H., Martín-Durán, J. M., Grohme, M., Hüttner, K., Bartscherer, K., Henry, I., & Rink, J. C.
PlanMine 3.0—improvements to a mineable resource of flatworm biology and biodiversity
Nucleic Acids Research, gky1070. doi:10.1093/nar/gky1070 (2018)