InterPro : IPR012234

Name  Tyrosine-protein kinase, non-receptor SYK/ZAP-70 Short Name  Tyr_kinase_non-rcpt_SYK/ZAP70
Type  Family Description  Protein phosphorylation, which plays a key role in most cellular activities, is a reversible process mediated by protein kinases and phosphoprotein phosphatases. Protein kinases catalyse the transfer of the gamma phosphate from nucleotide triphosphates (often ATP) to one or more amino acid residues in a protein substrate side chain, resulting in a conformational change affecting protein function. Phosphoprotein phosphatases catalyse the reverse process. Protein kinases fall into three broad classes, characterised with respect to substrate specificity []:Serine/threonine-protein kinasesTyrosine-protein kinasesDual specificity protein kinases (e.g. MEK - phosphorylates both Thr and Tyr on target proteins)Protein kinase function is evolutionarily conserved from Escherichia coli to human []. Protein kinases play a role in a multitude of cellular processes, including division, proliferation, apoptosis, and differentiation []. Phosphorylation usually results in a functional change of the target protein by changing enzyme activity, cellular location, or association with other proteins. The catalytic subunits of protein kinases are highly conserved, and several structures have been solved [], leading to large screens to develop kinase-specific inhibitors for the treatments of a number of diseases [].Tyrosine-protein kinases can transfer a phosphate group from ATP to a tyrosine residue in a protein. These enzymes can be divided into two main groups []:Receptor tyrosine kinases (RTK), which are transmembrane proteins involved in signal transduction; they play key roles in growth, differentiation, metabolism, adhesion, motility, death and oncogenesis []. RTKs are composed of 3 domains: an extracellular domain (binds ligand), a transmembrane (TM) domain, and an intracellular catalytic domain (phosphorylates substrate). The TM domain plays an important role in the dimerisation process necessary for signal transduction []. Cytoplasmic / non-receptor tyrosine kinases, which act as regulatory proteins, playing key roles in cell differentiation, motility, proliferation, and survival. For example, the Src-family of protein-tyrosine kinases [].This entry represents the non-receptor tyrosine kinases SYK and ZAP-70 [, , ]:SYK is a positive effector of BCR-stimulated responses. It couples the B-cell antigen receptor (BCR) to the mobilisation of calcium ion, either through a phosphoinositide 3-kinase-dependent pathway (when not phosphorylated on tyrosines of the linker region), or through a phospholipase C-gamma-dependent pathway (when phosphorylated on Tyr-342 and Tyr-346). Therefore, the differential phosphorylation of Syk can determine the pathway by which BCR is coupled to the regulation of intracellular calcium ion [, ].ZAP70 plays a role in T-cell development and lymphocyte activation. It is essential for TCR-mediated IL-2 production. Isoform 1 of ZAP70 induces TCR-mediated signal transduction, isoform 2 does not [, ].
 Feedback

Sequence Features

GO Displayer

Proteins

InterPro protein domain ID --> Contigs

 

Other

0 Child Features

7 Contains

Id Name Short Name Type
IPR011009 Protein kinase-like domain Kinase-like_dom Domain
IPR000719 Protein kinase domain Prot_kinase_dom Domain
IPR001245 Serine-threonine/tyrosine-protein kinase catalytic domain Ser-Thr/Tyr_kinase_cat_dom Domain
IPR000980 SH2 domain SH2 Domain
IPR017441 Protein kinase, ATP binding site Protein_kinase_ATP_BS Binding_site
IPR020635 Tyrosine-protein kinase, catalytic domain Tyr_kinase_cat_dom Domain
IPR008266 Tyrosine-protein kinase, active site Tyr_kinase_AS Active_site

0 Found In

0 Parent Features

14 Publications

First Author Title Year Journal Volume Pages
Hanks SK The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. 1988 Science 241 42-52
Manning G Evolution of protein kinase signaling from yeast to man. 2002 Trends Biochem Sci 27 514-20
Manning G The protein kinase complement of the human genome. 2002 Science 298 1912-34
Stout TJ High-throughput structural biology in drug discovery: protein kinases. 2004 Curr Pharm Des 10 1069-82
Li B Creating chemical diversity to target protein kinases. 2004 Comb Chem High Throughput Screen 7 453-72
Sharma PS Receptor tyrosine kinase inhibitors as potent weapons in war against cancers. 2009 Curr Pharm Des 15 758-76
Li E Role of receptor tyrosine kinase transmembrane domains in cell signaling and human pathologies. 2006 Biochemistry 45 6241-51
Roskoski R Jr Src kinase regulation by phosphorylation and dephosphorylation. 2005 Biochem Biophys Res Commun 331 1-14
Chan AC ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain. 1992 Cell 71 649-62
Law CL Molecular cloning of human Syk. A B cell protein-tyrosine kinase associated with the surface immunoglobulin M-B cell receptor complex. 1994 J Biol Chem 269 12310-9
Taniguchi T Molecular cloning of a porcine gene syk that encodes a 72-kDa protein-tyrosine kinase showing high susceptibility to proteolysis. 1991 J Biol Chem 266 15790-6
Reeve JL SLP-76 couples Syk to the osteoclast cytoskeleton. 2009 J Immunol 183 1804-12
Ruzza P Therapeutic prospect of Syk inhibitors. 2009 Expert Opin Ther Pat 19 1361-76
Arpaia E Defective T cell receptor signaling and CD8+ thymic selection in humans lacking zap-70 kinase. 1994 Cell 76 947-58



To cite PlanMine, please refer to the following publication:

Rozanski, A., Moon, H., Brandl, H., Martín-Durán, J. M., Grohme, M., Hüttner, K., Bartscherer, K., Henry, I., & Rink, J. C.
PlanMine 3.0—improvements to a mineable resource of flatworm biology and biodiversity
Nucleic Acids Research, gky1070. doi:10.1093/nar/gky1070 (2018)