InterPro : IPR012796

Name  Lysidine-tRNA(Ile) synthetase, C-terminal Short Name  Lysidine-tRNA-synth_C
Type  Domain Description  The aminoacyl-tRNA synthetase (also known as aminoacyl-tRNA ligase) catalyse the attachment of an amino acid to its cognate transfer RNA molecule in a highly specific two-step reaction. These proteins differ widely in size and oligomeric state, and have limited sequence homology []. The 20 aminoacyl-tRNA synthetases are divided into two classes, I and II. Class I aminoacyl-tRNA synthetases contain a characteristic Rossman fold catalytic domain and are mostly monomeric []. Class II aminoacyl-tRNA synthetases share an anti-parallel beta-sheet fold flanked by alpha-helices [], and are mostly dimeric or multimeric, containing at least three conserved regions [, , ]. However, tRNA binding involves an alpha-helical structure that is conserved between class I and class II synthetases. In reactions catalysed by the class I aminoacyl-tRNA synthetases, the aminoacyl group is coupled to the 2'-hydroxyl of the tRNA, while, in class II reactions, the 3'-hydroxyl site is preferred. The synthetases specific for arginine, cysteine, glutamic acid, glutamine, isoleucine, leucine, methionine, tyrosine, tryptophan and valine belong to class I synthetases. The synthetases specific for alanine, asparagine, aspartic acid, glycine, histidine, lysine, phenylalanine, proline, serine, and threonine belong to class-II synthetases. Based on their mode of binding to the tRNA acceptor stem, both classes of tRNA synthetases have been subdivided into three subclasses, designated 1a, 1b, 1c and 2a, 2b, 2c.This entry represents the C-terminal domain of lysidine-tRNA(Ile) synthetase, which ligates lysine onto the cytidine present at position 34 of the AUA codon-specific tRNA(Ile) that contains the anticodon CAU, in an ATP-dependent manner. Cytidine is converted to lysidine, thus changing the amino acid specificity of the tRNA from methionine to isoleucine. The N-terminal region contains the highly conserved SGGXDS motif, predicted to be a PP-loop motif involved in ATP binding.The only examples in which the wobble position of a tRNA must discriminate between G and A of mRNA are AUA (Ile) versus AUG (Met) and UGA (stop) versus UGG (Trp). In all bacteria, the wobble position of the tRNA(Ile) recognizing AUA is lysidine, a lysine derivative of cytidine. This domain is found, apparently, in all bacteria in a single copy. Eukaryotic sequences appear to be organellar. The domain architecture of this protein is variable; some, including characterised proteins of Escherichia coliand Bacillus subtilisknown to be tRNA(Ile)-lysidine synthetase, include a conserved 50-residue domain that many other members lack. This protein belongs to the ATP-binding PP-loop family. It appears in the literature and protein databases as TilS, YacA, and putative cell cycle protein MesJ (a misnomer).The PP-loop motif appears to be a modified version of the P-loop of nucleotide binding domain that is involved in phosphate binding []. Named PP-motif, since it appears to be a part of a previously uncharacterised ATP pyrophophatase domain. ATP sulfurylases, E. coli NtrL, and B. subtilis OutB consist of this domain alone. In other proteins, the pyrophosphatase domain is associated with amidotransferase domains (type I or type II), a putative citrulline-aspartate ligase domain or a nitrilase/amidase domain. The HUP domain class (after HIGH-signature proteins, UspA, and PP-ATPase) groups together PP-loop ATPases, the nucleotide-binding domains of class I aminoacyl-tRNA synthetases, UspA protein (USPA domains), photolyases, and electron transport flavoproteins (ETFP). The HUP domain is a distinct class of alpha/beta domain[].
 Feedback

Sequence Features

GO Displayer

Proteins

InterPro protein domain ID --> Contigs

 

Other

0 Child Features

0 Contains

2 Found In

Id Name Short Name Type
IPR015262 Lysidine-tRNA(Ile) synthetase, substrate-binding domain Lysidine-tRNA-synth_subst-bd Domain
IPR012094 Lysidine-tRNA(Ile) synthetase Lysidine-tRNA-synth Family

0 Parent Features

8 Publications

First Author Title Year Journal Volume Pages
Perona JJ Structural basis for transfer RNA aminoacylation by Escherichia coli glutaminyl-tRNA synthetase. 1993 Biochemistry 32 8758-71
Delarue M The aminoacyl-tRNA synthetase family: modules at work. 1993 Bioessays 15 675-87
Cusack S Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases. 1991 Nucleic Acids Res 19 3489-98
Schimmel P Classes of aminoacyl-tRNA synthetases and the establishment of the genetic code. 1991 Trends Biochem Sci 16 1-3
Sugiura I The 2.0 A crystal structure of Thermus thermophilus methionyl-tRNA synthetase reveals two RNA-binding modules. 2000 Structure 8 197-208
Eriani G Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. 1990 Nature 347 203-6
Bork P A P-loop-like motif in a widespread ATP pyrophosphatase domain: implications for the evolution of sequence motifs and enzyme activity. 1994 Proteins 20 347-55
Aravind L Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: implications for protein evolution in the RNA. 2002 Proteins 48 1-14



To cite PlanMine, please refer to the following publication:

Rozanski, A., Moon, H., Brandl, H., Martín-Durán, J. M., Grohme, M., Hüttner, K., Bartscherer, K., Henry, I., & Rink, J. C.
PlanMine 3.0—improvements to a mineable resource of flatworm biology and biodiversity
Nucleic Acids Research, gky1070. doi:10.1093/nar/gky1070 (2018)