InterPro : IPR016045

Name  Tyrosine-protein kinase, non-receptor, TYK2, N-terminal Short Name  Tyr_kinase_non-rcpt_TYK2_N
Type  Domain Description  Protein phosphorylation, which plays a key role in most cellular activities, is a reversible process mediated by protein kinases and phosphoprotein phosphatases. Protein kinases catalyse the transfer of the gamma phosphate from nucleotide triphosphates (often ATP) to one or more amino acid residues in a protein substrate side chain, resulting in a conformational change affecting protein function. Phosphoprotein phosphatases catalyse the reverse process. Protein kinases fall into three broad classes, characterised with respect to substrate specificity []:Serine/threonine-protein kinasesTyrosine-protein kinasesDual specificity protein kinases (e.g. MEK - phosphorylates both Thr and Tyr on target proteins)Protein kinase function is evolutionarily conserved from Escherichia coli to human []. Protein kinases play a role in a multitude of cellular processes, including division, proliferation, apoptosis, and differentiation []. Phosphorylation usually results in a functional change of the target protein by changing enzyme activity, cellular location, or association with other proteins. The catalytic subunits of protein kinases are highly conserved, and several structures have been solved [], leading to large screens to develop kinase-specific inhibitors for the treatments of a number of diseases [].Tyrosine-protein kinases can transfer a phosphate group from ATP to a tyrosine residue in a protein. These enzymes can be divided into two main groups []:Receptor tyrosine kinases (RTK), which are transmembrane proteins involved in signal transduction; they play key roles in growth, differentiation, metabolism, adhesion, motility, death and oncogenesis []. RTKs are composed of 3 domains: an extracellular domain (binds ligand), a transmembrane (TM) domain, and an intracellular catalytic domain (phosphorylates substrate). The TM domain plays an important role in the dimerisation process necessary for signal transduction []. Cytoplasmic / non-receptor tyrosine kinases, which act as regulatory proteins, playing key roles in cell differentiation, motility, proliferation, and survival. For example, the Src-family of protein-tyrosine kinases [].TYK2 was first identified by low-stringency hybridisation screening of ahuman lymphoid cDNA library with the catalytic domain of proto-oncogene c-fms []. Mouse and puffer fish orthlogues have also been identified. In common with JAK1 and JAK2, and by contrast with JAK3, TYK2 appears to be ubiquitously expressed. This entry represents the N-terminal region of TYK2.
 Feedback

Sequence Features

GO Displayer

Proteins

InterPro protein domain ID --> Contigs

 

Other

0 Child Features

1 Contains

Id Name Short Name Type
IPR000980 SH2 domain SH2 Domain

1 Found In

Id Name Short Name Type
IPR016251 Tyrosine-protein kinase, non-receptor Jak/Tyk2 Tyr_kinase_non-rcpt_Jak/Tyk2 Family

0 Parent Features

9 Publications

First Author Title Year Journal Volume Pages
Hanks SK The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. 1988 Science 241 42-52
Manning G Evolution of protein kinase signaling from yeast to man. 2002 Trends Biochem Sci 27 514-20
Manning G The protein kinase complement of the human genome. 2002 Science 298 1912-34
Stout TJ High-throughput structural biology in drug discovery: protein kinases. 2004 Curr Pharm Des 10 1069-82
Li B Creating chemical diversity to target protein kinases. 2004 Comb Chem High Throughput Screen 7 453-72
Sharma PS Receptor tyrosine kinase inhibitors as potent weapons in war against cancers. 2009 Curr Pharm Des 15 758-76
Li E Role of receptor tyrosine kinase transmembrane domains in cell signaling and human pathologies. 2006 Biochemistry 45 6241-51
Roskoski R Jr Src kinase regulation by phosphorylation and dephosphorylation. 2005 Biochem Biophys Res Commun 331 1-14
Krolewski JJ Identification and chromosomal mapping of new human tyrosine kinase genes. 1990 Oncogene 5 277-82



To cite PlanMine, please refer to the following publication:

Rozanski, A., Moon, H., Brandl, H., Martín-Durán, J. M., Grohme, M., Hüttner, K., Bartscherer, K., Henry, I., & Rink, J. C.
PlanMine 3.0—improvements to a mineable resource of flatworm biology and biodiversity
Nucleic Acids Research, gky1070. doi:10.1093/nar/gky1070 (2018)